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Abstract: This study aims to highlight the importance of knowing the methods of solving  Diophantine equations. The 

material is structured into: Introduction, Classes of Diophantine equations, presentation of first-degree Diophantine 

equations, Pythagorean triples and higher - Diophantine equations, methods for solving Diophantine equations. The paper 

describes and exemplifies different methods such as the decomposition method, the parametric method for solving 

Diophantine equations, solving Diophantine equations with inequalities through the method of modular arithmetic, 

mathematical induction, Fermat's method of infinite descent. Solving problems is illustrated by various applications of the 

mathematical results methods presented above. Any education, including mathematical education, has a double effect. On 

the one hand, the learner gains knowledge, on the other hand, he builds those skills which are engaged in work, develop the 

abilities needed to perform this education. Mathematical education builds thought. Of course, other actions are involved in 

building thought, but the role of Mathematical education is essential. This article is part of an empirical research on the 

teaching and learning of mathematics, teaching practices related to the main classes of Diophantine equations, leading to 

the development of cognitive skills in students. 
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1. Introduction

This paper aims to highlight the important nuances in the 

study of Diophantine equations. We call Diophantine 

equation an equation of the form: f (x1, x1, ...., xn) = 0, (1), 

where f is a function of n variables and n ≥ 2. If f  is a 
polynomial with integer coefficients, the equation is called 

algebraic Diophantine equation. An n - tuple  ����, ���, … . , �	�
 � �	 which satisfies (1) is called a solution 
of equation (1). An equation that has one or more solvent 

solutions is called solvable [1].  

The problem of finding solutions to equation (1) is 

completely solved in integers only for equations with one 

unknown, for equations of the first order and second order 

equations with two unknowns. It is generally difficult 

enough even question of the existence the whole solution. 

2. Classes of Diophantine Equations 

2.1. Diophantine Equations of the first Degree 

Definition. A Diophantine equation (1) with two 

unknown terms: ax + by=c (1) where 
, �, � � �, 
� � 0. 

The pair �x�, y�
 � Z� which verifies (1) is called particular 
solution. 

Theorem 1. The necessary and sufficient condition for 

the equation (1) to admit solutions is d/c, where d=(a, b) [1]. 

Demonstration.  If we have �x�, y�
  verifying (1), then  
ax0 +by0=c and  we have d/c,  so the condition is necessary. 

If d/c, there is c1∈R, so that c=dc1. When d= (a, b), there 

is u, v � Z,  so that au+bv=d (2). By multiplying the two 

terms of the inequality (2) with c1  we get a(c1u) + b(c1v)=c,  

and the pair (c1u,c1v) is a particular solution of the equation  

(1). 

Theorem 2. When the Diophantine equation ax+by=c  

has as particular solution (x0, y0) and d=(a, b), the general 

result is given by: x=x0 +(b/d)t, y=y0 -(a/d)t, � � � [1]. 

Demonstration. When (x0, y0) is a particular solution, 

then ax0+by0=c (3). For an arbitrary pair (x, y) � Z2  we 

have a x +b y =c (4). From the subtractions between the 

two relations, we get: a(x-x0)=b(y0-y) (5). As a=a1d, b=b1d, 

(a1,b1) = 1, relation (5) becomes a1(x-x0)=b1(y0-y) (6). It 
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results that b1/a1(x-x0) and (a1,b1) = 1 we deduce that b1/x-

x0, there is t �Z, so that  x-x0 = b1 t .  By replacing in (6) we 

get y0-y=a1t. So x=x0 +b1t  end  y=y0-a1t . 

Reciprocal, if (x0, y0) is a particular solution (verify (3)) 

and x=x0+b1t, y=y0-a1t , t � Z, then (6) implies (5). Finally 

from (5) and (3) there results (4), so (x, y) is a solution of 

the equation. 

Corollary. Having a1, a2 two full primary numbers. If (x0, 

y0) is a solution of the equation a1x+a2y=b then all the 

solutions are given by x=x0+a2t, y=y0-a1t where t � Z. 

Example: Find the higher common divisor of the full 

numbers 1215 and 2755 and express them as a linear 

combination of the two numbers [3].  

Solve in Z the equation 1215 x -2755 y=560. 

Solution.  a) d=(1215,-2755) = (2755,1215). Applying 

Euclid algorithm, we have:  

2755=1215⋅2+325 

1215=325⋅3+240 

325=240⋅1+85 

240=85⋅2+70 

85=70⋅1+15 

70=15⋅4+10 

15=10⋅1+5 

10=5⋅2, so d=5. 

To find u, v � Z so that d=1215u+(-2755)v  we use the 

algorithm above. We have:  

325=1⋅2755+(-2) ⋅1215 

240=(-3) ⋅2755+7⋅1215 

85=325-240⋅1=4⋅2755-9⋅1215 

70=240-85⋅2=(-11) ⋅2755+25⋅1215 

15=1⋅52755-34⋅1215 

10=-71⋅2755+161⋅1215 

5=86⋅2755-195⋅1215 

So 5=1215⋅ (-195)+(-2755) ⋅ (-86). 

We have 5/560, so the equation has solutions. If 

560=5⋅112, the particular solution is x0=-195⋅112,  

y0=-86⋅112, and the general solution  is x=x0+551⋅t , 

y=y0+243⋅t,  t  � Z. 

Definition. A Diophantine equation 1 with n unknown 

terms (n � 1) is called Diophantine linear equation and it 

looks like in the example: a1x1+a2x2+….+anxn=b (7), where 

a1, a2, …, an, b are full fixed numbers and a1, a2, …, an, are 

zero numbers. 

Theorem 3. The necessary condition is enough so that 

equation (7) to have solutions like d/b, where d= (a1, a2, …, 

an) [1]. 
Demonstration. A solution of equation (7) is an ordinate 

system  ����, ���, … . , �	�
 � �	  (8) where there is the 
equality a1x1+a2x2+….+anxn=b. We presume that b is not 

divided with d, then the equality (8) is not possible, as the 

left side  of d (8) is divided with d, and the right side can 

not. If d/b, meaning b=db1, there is u1, u2, …, un � Z  so 
that a1u1+a2u2+ +…+anun=d. Multiplying both terms  with 

b1, we get: a1(u1b1)+a2(u2b1)+ …+an(unb1)=b and we 

emphasized a particular result of the equation (7), 

 ��� � ����, ��� � ����, … . . , �	� � �	��. 
In order to find the multitude of solutions for this 

equation we use the following:  

Theorem 4.  The solving of the Diophantine equation (1) 

with n unknown terms reduces to the solving of a 

Diophantine equation (1) with two unknown terms and a 

Diophantine equation (1) with n-1 unknown terms. The 

general solution depends of  n-1 full parameters [1]. 

Demonstration. We have equation (7) which 

accomplishes the condition d/b , d=(a1, a2, …, an). We write 

d2=(a1,a2), d3=(d2 ,a3),…, dk=(dk-1,ak),…,  dn= 

(dn-1,an). We know that d=dn. We write a1x1+a2x2+….+ 

an-1xn-1 =dn-1y. The equation (7) is equivalently written  

dn-1y+anxn= b  (9).  As (dn-1,an)=d an d/b, equation (9) has 

solutions and  if ���, �	� ) is a particular solution of the 

equation, the general result is: � � �� � �
	/�
�,  � � ��	��/�
�, � � �. For the fixed value of t, we find a 

value for xn and another value for y. 

In order to find a solution for equation (7), we need to 

find, for fixed �, ��, �	��  so that: a1x1+a2x2+….+an-1xn-1=   

dn-1(y0+(an/d)t (10). If (a1,a2, …,an-1)=dn-1 and  �	��/�	����� � �
	 /�

, the equation (10) has solutions. 

According to theorem 2, the Diophantine equation 1 with 

two unknown terms has solutions and the general result 

depends on a parameter. Supposing that the general result 

of the equation with n-1 unknown terms depends on the 

parameters n-2: t1, t2 , …, tn-2 .  It results that the general 

solution of equation (7), depends on the n-1 parameters: t1 , 

t2 , …, tn-2 and  t. The given demonstration encloses a method 

of determining the general solution of the equation (7) for  � � 2. We determine xn according to the parameter tn-1:  

xn =xn
0-(dn-1/d)tn-1 ,tn-1∈Z. From (10) we have xn-1 which 

depends on a new parameter tn-2 (and of tn-1) etc., until we 

get a1x1+a2x2=A(t2 , t3 , …, tn-1),  where x1 and x2  depend 

on the t1 parameter. 
Example Solve in Z   the Diophantine equation,  

4x1-6x2 +10x3+2x4=14. 

Solution d=(4, -6, 10, 2)=2 and 2/14, so it has solutions 

like, d3=(4 , -6 , 10)=2.  We write 4x1-6x2 +10x3=2y1 and 

the given equation becomes 2y1+2x4=14 or  y1+x4+7 .  We 

write y1=t3 and we have x4=7-t3 ,   t ∈Z .  We get 4x1-6x2 

+10x3=2t3 or 2x1-3x2+5x3=t3. We write 2x1-3x2=y2 and we 

get y2+5x3=t3. We write x3=t2, so y2=t3-5t2. From  2x1-

3x2=t3-5t2, 2(2t3-10t2)-3(t3-5t2)=t3-5t2, we get x1=2t3-

10t2+3t1, x2=t3-5t2+2t1. The general solution is: 

x1=3t1-10t2+2t3 ; x2=2t1-5t2+t3 ; x3=t2 ; x4=7-t3 , t1, t2 , t3∈Z. 

2.2. The Pythagorean Triples and their Problems 

One of the most famous Diophantine equations is called 

the Pythagoras equation x2+y2=z2 (1). 

Studied in fine details by Pythagoras in relation with the 

rectangle triangles whose sides has natural numbers like 

lengths, this equation has been known since the old times 

of the Babylon. 

Observations: 1. If the triplet (x0, y0, z0) encloses 

equation (1), then any triplet of the form (kx0, ky0, kz0), 

k∈Z is also a solution of the equation (1). In order to find 

all the solutions of the equation (1), consisting in zero 

numbers, it is enough to find the solutions (x, y, z) for 
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which the numbers are relative primary. The solutions 

which have relative primary numbers two by two are 

named primitive solutions.  

2. If in a solution (x, y, z) of the equation (1) two of the 

numbers x, y, z have a then ! � "1  the third number 

divides with !. 

3. If  (x, y, z) is a solution of the equation (1) then (y, x, z) 

is a solution 

4. If (x, y, z) is a solution of equation (1) then x or y is 

even (if  x and y  are both uneven then x2+y2 would be 

4k+2, when the square  of a full number can only be 4k or 

4k+1). 

5. If (x, y, z)  is a solution of the equation (1) then ( ± y,

± x, ± z)  will be solutions. 

Theorem Any solution (x, y, z) of natural numbers of 

equation (1)  is  x=2mn, y=m2-n2 , z=m2+n2  (2) with m and 

n natural numbers, primary, different parities and  � $ % 

[1]. 

Demonstration. The entity (2mn)2+(m2-n2)2=(m2+n2)2  

shows that the numbers are solutions of the equation (1) 

with x even. If the numbers x, y, z have a common divisor ! � 2 then ! divides and the numbers 2m2=(m2+n2)2+(m2-

n2)2 and 2n2=(m2+n2)2-(m2-n2)2.  When (m, n)=1 it results ! � 2 but this time m2 and n2 are simultaneous even or 

uneven which is impossible as the hypothetically m and n 

do not have different parities. The solution is primitive. 

Reciprocally, when (x, y, z) is a primitive solution of (1),  

with  x, y, z natural numbers and  x an even number (x=2a). 

Then y and  z are  uneven, so the numbers z+y and z-y  are 

even (fie z+y =2b and  z-y =2c). Any  common divisor of b 

and c divides z=b+c and y=b-c, so λ = ± 1, and (b, c)=1. 

On the other side 4a2=x2=z2-y2=4bc, where a2=bc, and 

b=m2 and c=n2  (m, n∈N),  and a2=m2n2 ⇔a=mn, so 

x=2a=2mn, y=b-c=m2-n2 and z=b+c=m2+n2 (see n<m). 

A triplet (x, y, z) like (2) is called Pythagorean triple.  

Corollary All the solutions of equation (1) are given by 

x=2rmn, y= r(m2-n2), z=r(m2+n2) with  r, m, n∈Z. The 

immediate generalization of the equation (1) is given by the 

equation x2+y2+z2=t2 (3). The positive solutions of equation 

(3) represents the dimension and length of the diagonal  of 

a rectangle of a parallelepiped.  Like in the case of 

rectangle triangle it is here where intersects where all 

dimensions are natural numbers.  
Theorem all the solutions in natural numbers of the 

equation (3) are given by x, y, z, t with y, z even numbers 

and  � � &'()'�	'	 , y=2l, z=2m, � � &'()'(	'	  (4)  where l, 

m, n  are natural arbitrary numbers, and  n is a divisor of 

l
2
+m

2  smaller than  √+� � %�.  Any solution is obtained 

once [1].   

Demonstration  The entity ,&'()'�	'	 - � �2+
� ��2%
� � ,&'()'(	'	 -�
   shows that the defined quadruple 

(4) is a solution of the equation (3) besides, the y numbers, 
are  even. 

On the other side, we observe that at least two of the 

numbers  x, y, z are even, so we have t2≡2,3 (mod4) which 

is not possible.  

Presuming that y=2l, z=2m, where l, m∈N*. Writing t-

x=u we get X2+4l2+4m2=(x+u)2  and u2=4(l2+m2)-2ux.  So 

u2 is even, and u=2n, where n∈N*. It results that  � � &'()'�	'	  and t=x+u=x+2n=
&'()'(	'	 , where l,m,n ∈N* 

and n is a divisor of +� � %� smaller than √+� � %�. It is 
easy to see that any solution ( x, y, z, t ) of equation (3) 

with y and  z even  we het one result by using these 

formulas (4). By (4) we get + � .� , % � /� , � � 0�1�  and the 

full numbers re determined by the quadruple ( x, y, z, t ). 

2.3. Superior Diophantine Equations 

2.3.1. 
 
Bachet Equations 

Definition.  A Bachet equation looks like y2=x3+k with 

k∈ Z*. 

Theorem. The equation y2=x3+7 does not have solutions 

in Z2 [3]. 

Demonstration. If x is even then y2≡3 (mod 4) which is 

absurd.  Also, if x≡3 (mod 4) then y2≡2 (mod 4) again 

absurd. So x≡1(mod 4). Writing y2+1=x3+8=(x+2)(x2-

2x+4), and x 2-2x+4≡3(mod 4), we deduce that y2≡-1(mod 

4)⇔ y2≡3(mod 4), which is again absurd.  

Theorem. The equation y2=x3-16 does not have solutions 

in Z2 [4]. 
Demonstration. When x is even, x=2a, y is also even, 

and y=2b with a, b∈ Z. Then b2+4=2a3, with b=2c and a 

=2d , c, d∈ Z. Then c2+1=4d3 which is absurd. So x and y 

are uneven. We deduce that x3≡1(mod 8), so x≡1(mod 8). 

Then x-2≡-1(mod 8) and (x-2)/(x3-8)=y2+8. We deduce that 

x-2 can not have primary factors p like p≡1, 3(mod 8), so 

there is a primary p which divides y2+8, and p≡5 (mod 8), 

or p≡7 (mod 8). So + � .'2 � �32 � ��2 , is a contradiction.  

Theorem. The equation x4+y4=z2 (1) does not have 

solution in Z* [4]. 
Demonstration. Presuming that there is a solution in Z* 

of the equation (1). We can presume that this solution is of 

zero natural numbers. Like any non empty quantity of 

natural numbers has a small element, then among the 

solutions of equation (1) there is (x, y, z) with z minimum. 

When x or y have to be par, let us presume that x is even. 
Like (x2)2+(y2)2=z2 and x2,y2 and z are natural (they can be 

relatively primary), and the natural numbers m, n with  

n<m,  primary and of different parities so that x2=2mn, 

y2=m2-n2 and z=m2+n2. If m=2k and n=2t+1 then y2=4(k2-

t2-t-1)+3, which is not possible (because y2 has to be 4k or 

4k+1). So m is uneven and n is even. We have n=2q; and 

x2=4mn so that %4 � ,1�-�
. When (m, n)=1 we deduce that % � 5�� , q=t2 with z1 and t natural and primary among 

them .   

Particularly, we observe that �� � �5��
� 6 �2��
�  7 �� � �2��
� � �5��
�. There is a, b natural zero primary of 

different parities with 
 8 �   so that 2t2=2ab 9  t2=ab , 

y=a2-b2, z2=a2 +b2. As a and b are primary and t2=ab we 

deduce that a=x1
2, b=y1

2 and x1
4 +y1

4 = z1
2. We deduce that ���, ��, 5�
 is the solution of equation (1) and depending of 
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the choice of z we have 5� � 5 9 5�� � 5 9 % � %� � �� 
which is absurd.  

Corollary.  The equation x4+y4=z4   (2) can not have 

solutions of full zero numbers [9]. 

Observations: 1. Equation(2) is a special case of Fermat 

xn+yn=zn (3). Where n>2 is a natural number and x,y,z are 

full zero numbers. Fermat theorem (the conjecture of 

Fermat) says that the equation (3) does not have solutions if 

n>2. 

Theorem. The equation x4-y4=z2 (4) does not have 

solutions in Z* [9]. 
Demonstration. We presume that x, y, z >0 and (x, y)=1.  

We write the equation like  (x2-y2) (x2+y2)=z2. We easily 

see that  (x2-y2,x2+y2)=1 or (x2-y2,x2+y2)=2. In the first case 

we get the system :�� � �� � ���� 6 �� � ;� <  which can not be solved 

in full zero numbers. In the second case we get :�� � �� � 2=��� 6 �� � 8?� <  meaning :=� � �2?
� � ��=� 6 �2?
� � �� <  a system 

which, is again without solutions.  

Example. Solve in full numbers the equation x4+y4=2z2. 

Solution. Without restraining the general we can presume 

that (x,y)=1. Then x and y are both uneven and  5@ 6 ���
@ � ,1A�.A� -�
. We have xyz=0 or x4-y4=0, so 

x=y=z=0 or x2=y2=z. the solutions of the equation are 

(k,k,k2), k ∈Z. 

2.3.2. Pell Equations 

Thue’s theorem If  f=anz
n+an-1z

n-1+…+a1 z+a0  a  

polynomial  with full values degree ≥ 3, irreducible above 

Z. The homogeneous polynomial F(x, y)=anx
n+an-1x

n-

1y+….+a1xyn-1+a0y
n. If m is a full non-null number, the 

equation F(x,y)=m  does not have solutions or has a finite 

number of solutions in the multitude of full numbers. 

Observation. This result contrasts with the situation 

when the level of F is n=2. In this case the full, if 

F(x,y)=x2-Dy2, where D is a natural number which does not 

have a perfect square, any zero number m, the general Pell 

equation x2-Dy2=m  either has no solutions, or has an 

infinity of solutions. 

Short history 

The first study on the equation x2-dy2=1, were done by 

Euler, the English mathematician John Pell. These should 

be called after Fermat, as he was the first to study the 

properties of un trivial solutions. The Pell equation date 

back from the Greeks. Theon of  Smyrna  approximated √2 

through fractions x/y, where x and y are solutions of the 

equation x2-2y2=1.Generally, if x2=dy2+1, then 
1'.' � � � �.' 

and for y big enough, 
1.

 

he approximates √� , known by 

Archimedes. 

Archimedes’s problem of bulls - finding the smallest 

group of bulls satisfying the seven conditions in eight 

unknown terms, was solved after more than 2000 years by 

Carl Amthov, in 1880. It reduces to finding a minimal 

solution of the equation x2-4729494y2=1, a solution where 

y has  41 terms [4]. 

The solving of the equation x2-dy2=1 was done by  

Diophantus in “Arithmetica”. In the case when d=m2+1, 

Diophantus found a particular solution x=2m2+1 , y=2m .  
The Pell equations can be found in Hindu mathematics. 

In the 4th century, the Indian mathematician Baudhayana 

observed that x=577 , y=408 is a solution of the equation 

x2-2y2=1 and used fraction 
BCC@�3 

 

to approximate √2. In the 

7th century, Brahmagupta determined the minimal solution 

of the equation x2-92y2=1. This is x=1151 , y=120. In the 

12th century, the Indian mathematician Bhaskara showed 
that the minimal solution of the equation x2-61y2=1 is 

x=226153980  y=1766319049.  

The study of Pell’s equations was done by Fermat, and 

Wallis in 1657, Euler in 1770, Lagrange in 1766 etc. 

2.3.3. Solving Pell Equations by Elementary Methods 

Solving Pell Equation according to Lagrange 

Theorem.  If D is a natural number which is not a perfect 

square, the equation u2-Dv2=1  (1)  has an infinity of 
solutions in natural numbers and the general solution is 

given by (un,vn) 1≥n , where �	(� � ���	 � D;��	 ,  

vn+1=v0un+u0vn  , u1=u0 , v1=v0   (2) (u0 , v0) is a fundamental 

solution, the smallest solution different from (1, 0) [10]. 

Demonstration Let us show that the equation (1) has a 
fundamental solution. Let there be c1 a natural number 

bigger than 1. Let us show that there are natural numbers 

t1,w1 ≥ 1 so that  E�� 6 F�√D $ �GHE,   w1 ≤ c1. By 

considering +I � JK√D � 1L , K � M0, ��N O P  we have  0 Q +I 6 K√D Q 1  and √D  is an irrational number, and +IR � +IRR for k’ ≠ k”. There is i, j, p∈ { }1,...,2,1,0 c , i ≠ j, 

p ≠ 0, so that  
2��GH $ +V 6 W√D Q 2GH  and 

2��GH $ +X 6 Y√D Q2GH as there are  c1 intervals like �2��GH , 2GH
, p=1,c1 and  c1+1 

numbers like lk-k√D, , K � M0, ��N O P . 

From the inequalities above we have Z[+V 6 +X\ 6�Y 6 W
√DZ $ �GH and writing Z+V 6 +XZ � ��  and |Y 6 W| � F�   

we deduce that Z�� 6 F�√DZ $ �GH  and w1 < c1. By 

multiplying with �� 6 F�√D Q 2F�√D � 1  we get |��� 6 DF��| $ 2 ^HGH √D � �GH $ 2√D � 1.Choosing a natural 

number c2 > c1  so that Z�� 6 F�√DZ 8 �GH, we get natural 

numbers t2 ,w2 with properties like |��� 6 DF��| $ 2√D � 1   

and  |�� 6 ��| � |F� 6 F�| � 0 . 
By continuing this procedure, we get distinct 

pairs ��	, F	
	_�  which accomplish the inequalities |��� 6 DF��| $ 2√D � 1, for any natural number n. So the 

interval [2√D 6 1   ,2√D � 1\  contains a k full zero 

number with the property that there is another line of ��	, F	
	_�  which accomplishes the equation t2-Dw2=k. 
This line has at least two pairs (ts ,ws), (tr ,wr) for which ts

≡ tr(mod |K| ) , ws ≡ wr(mod |K| ), and tswr -trws ≠ 0  

contrary we get ts=tr and ws=wr, in contradiction with |�` 6 �a| � |F` 6 Fa| � 0. Let there be t0=tstr-Dwswr and 

w0=tswr-trws. Then ��� 6 DF�� � K� (3). On the other side, t� � tctd 6 Dwcwd g tc� 6 Dw�� g 0�mod|k|
 , implies 
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F� g 0�mod|k|).  The pair (t , w), where t� � t|k|  and w� � w|k| is a nontrivial solution of  Pell’s equation  (1). 

Let us show that the pair (un, vn) defined in (2) 

accomplishes Pell equation (1) for any n>0. If (un, vn) is a 

solution of this equation, then �	(�� 6 D;	(�� �����	 � D;	
� 6 D�;��	 � D;	
� � ���� 6 D;��
��	� 6D;	�
 � 1 and  (un+1 , vn+1)  is a solution of the equation (1). 

We observe that for any n ≥ 1 there is the relation  �	�� � ;	��√D � [�� � ;�√D\�
 Having relation 5	 �  �	�� � ;	��√D � [�� � ;�√D\�

 and observing that 

z1< z2<…< zn <  …… We will show that all the solution of 

equation (1) are like (4). If the equation (1) would have a 

solution (u , v) so that 5 � � � ;√D is not like (4), there is 
a natural number m with the property zm<z<zm+1 . So  

1< [� � ;√D\[�) 6 ;)√D\ $ ��� � ;�√D
,  and  we get  1 $ ���) 6 D;;)
 � ��); 6 �;)
√D $ [�� � ;�√D\. 
 On the other side we have  (uum-Dvvm)2-D(umv-uvm)2= (u2-

Dv2) ��)� 6 D;)� 
 � 1 , so  (uum-Dvvm, umv-uvm) is a 

solution for (1) smaller than (u0,v0) , which contradicts the 
supposition of  minimality of (u0,v0). 

Observations. 1) Recurrent relations (3.2.1) can be 

written matrix like ,�	(�;	(�- � k�� D;�;� D��l ,�	;	 -.  Where we get 

,�	;	 - � k�� D;�;� D��l	 ,��;�-  (5). If  k�� D;�;� D��l	 �
k
	 �	�	 �	l . Is known that an, bn, cn, dn  are linear 

combinations of  !�	 , !�	  where !�, !�  are values of the 

matrix  k�� D;�;� D��l Taking into consideration (5) after a 

simple analysis we get  

�	 � �� M[�� � ;�√D\	 � [�� � ;�√D\	
 , 

 ;	 � ��√m M[�� � ;�√D\	 � [�� 6 ;�√D\	
      (6). 

2) the solutions of the Pell equation, given in one of the 
examples in (4) or(6), can be used in approximating the 

radicals of the natural numbers which are not perfect 

squares. If ( )
1

, ≥nnn vu  are the solutions of equation (1), 

then   �	 6 ;	√D � �no(po√m  so
nopo 6 √D � �po[no(po√m\ $ $ �√mpo' $ �po'  . We have lim	st nopo � √D . The fractions nopo  approximate  √D with an error smaller than  

�po'. 

3. Elementary Methods of Solving 

3.1. The Method of Decomposition 

This method consists in writing the equation  

f(x1, x2, …., xn)=0  like  f1(x1,x2, …..,xn),  

f2(x1,x2,…,xn),…. fk(x1,x2,…..,xn) = a, where f1 , 

f2, …..,fk∈Z[X1 ,X2,…..Xk] and a∈Z . Using the 

decomposing method in primary terms of a, we get a finite 

number of decompositions in k full factors a1,a2, ….,ak. 

Each decomposition of this type leads to a system of 

equations like :  

uf��x�, x�, … . , xw
 � a�f��x�, x�, … . , xw
 � a�… … … … … … … … …fy�x�, x�, … . , xw
 � ay
< . 

By solving the system of equations we have the 

multitude of solutions for the given equation.  

Example 1. Solve in full numbers the equation  x + y = 

xy [10] . 

Solution  the equation is written like: (x - 1)(y - 1) = 1. 

As the product of two numbers is 1 if only both numbers 

are 1 or -1, we get the systems:   :x 6 1 � 1y 6 1 � 1<  and    :x 6 1 � 61y 6 1 � 61<. With solutions like (0,0) 

and (2,2). 

Example 2   Find all the solutions for the equation  

(x2+1)(y2+1)+2(x-y)(1- xy)=4(1+xy) . 

Solution   We write the equation like  

  x2y2 - 2xy+1+x2+y2 - 2xy + 2(x-y)(1-xy) = 4 or  (xy-

1)2+(x-y)2 - 2(x-y)(xy-1) = 4. This is equivalent with [xy-1-

(x-y)]2=4 where we get (x+1)(y-1)= ± 2.  

If (x+1)(y-1)=2  we have the following systems of 

equations:   

:x � 1 � 2y 6 1 � 1< ; :x � 1 � 62y 6 1 � 61<; :x � 1 � 1y 6 1 � 2<; :x � 1 � 61y 6 1 � 62< 
which lead to the solutions (1,2), (-3, 0) , (0, 3), (-2,-1). 

If (x+1)(y-1)=-2, we get the systems: 

: x � 1 � 2y 6 1 � 61< ; :x � 1 � 62y 6 1 � 1 <; :x � 1 � 61y 6 1 � 2 <; : x � 1 � 1y 6 1 � 62< 
whose solutions are (1,0), (-3, 2), (0,-1), (-2,3). 

All the eight pairs are solutions for the given equation.  

3.2. The Parametrical Method of Solving 

In many situations the solutions of a Diophantine 

equation f(x1,x2,…,xn)=0  can be represented parametrically 

like �� � z��K�, K�, … . , K&
,  �� � z��K�, K�, … . , K&
, ....., �	 � z	�K�, K�, … . , K&
, where g1,g2,…,gn are functions of 

l-variables, with full values and k1,…,kl∈Z. 

For some Diophantine equations the multitude of 

solutions can have many parametrical representations.  

In many cases, it is not possible to find all the solutions 

of a Diophantine equation. The parametrical method is a 

means to emphasize the infinite families of solutions. 

Example. Show that there is an infinity of triplets (x, y, z) 

of full numbers so that  x3+y3+z3= x2+y2+z2 [8]. 

Solution. By choosing l z=-y, the equation becomes 

x3=x2+2y2. If y= mx, m∈Z, then x=1+2m2 and we get the 

infinite family of solutions x=1+2m2,    y=m(1+2m2),   z=- 

m(1+2m2), m∈Z. 

3.3. Solving Diophantine Equations with Inequalities 

This method consists in determining the intervals with 
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unknown terms, by using the adequate inequalities. In 

general, this method leads not only to a finite number of 

possibilities for all the unknown terms or for part of these.  

Example Determine all the pairs  (x , y) of full numbers 

so that  x3+y3=(x+y)2 [2]. 

Solution First, we observe that the pairs (k, - k), k∈Z are 

solutions for the given equation.   

If  x+y ≠ 0, the equation becomes x2- xy+y2=x+y , 

which is equivalent with  (x-y)2+(x-1)2+(y-1)2=2. From this 

equality of full numbers we deduce  (x-1)2  ≤ 1 and 

 (y-1)2 ≤ 1. Where  x ∈ M0,2N , y ∈ M0,2N . We get the 

solutions (0 ,1) , (1, 0) ,(1 ,2) , (2 ,1) ,(2 , 2).  

3.4. The Method of Mathematical Induction 

The mathematical induction is a very much used and 

elegant method in demonstrating some affirmations which 

depend on the quantity of natural numbers.  

Let there be {��
, � � 0  a series  of propositions. This 

method helps us demonstrate that the proposition P(n) is 

true for any � � ��  , where no  is a natural number.  

Mathematical induction (weak form): We presume that  

•   P (no ) is true;  

•   For any k ≥ no , where P (k ) is true we have P (k +1 ) 

which is true.  Then, P(n) is true for any n ≥ n0.  

The mathematical induction (with s step):  Being s a 

natural number.  We presume that  

•    P (no ) , P (no+1 ),…, P (no+s-1 )  are true;  

•    For any K � ��, where P (k) is true we have P (k+s) 

which is true. Then P(n) is true for any � � ��. 

Mathematical induction (strong form): We presume that  

P(n0) is true; For any K � ��, where P(m) is true for any m 

with  n0 ≤ m ≤ k, where P(k+1) is true. Then P(n) is true for 

any n ≥ n0. 

This demonstration method is frequently used in 

different mathematical disciplines, including the theory of 

numbers. The following examples show the use of the 

mathematical induction in the study of Diophantine 

equations.  

Example 1  Demonstrate that for each natural number  � � 3, there are the uneven natural numbers x, y, with the 

property 7x2+y2=2n [8]. 

 Solution We will demonstrate that there are the natural 

uneven numbers xn , yn so that 7x
2

n +y
2

n =2
 n 

, n ≥ 3. For   n 

= 3 , we have   x3 = y3  = 1 .   

Presuming that for an n ≥ 3 fixed, there is xn , yn  uneven 

which accomplish 7x
2

n +y
2

n =2
n 
. We will build up the pair 

(xn+1  ,yn+1) of natural uneven  numbers so that 7x2
n+1 +y2

n+1 

= 2 n+1
. We observe that  

7 ,1o".o� -� � ,C1o~.o� -� � 2�7�	� � �	�
 � 2	(� . 
One of the natural numbers 

1o(.o�  and 
1o�.o�  is uneven 

(because the sum of the two numbers is max ��	 , �	� , 

which is uneven). If for example 
1�(.o�   is uneven, then 

 
C1o��o� � 3�	 � 1��.o�   is also uneven (like the sum of 

an uneven and an even number),   we could choose  

xn+1= 
1o(.o�  and  yn+1= 

C1o��o�  . 

If 
1o�.o�  is uneven, then 

C1o��o� � 3�	 � 1�(.o�   and we 

can choose xn+1= 
|1o�.o|�  and  yn+1= 

ZC1o��oZ�  . 

3.5. The Method of Modular Arithmetic 

In many situations, the simple examples of modular 

arithmetic prove to be useful in demonstrating that some 

Diophantine equations do not have a solution or the 

possibility of solutions is reduced.  

Example 1   Show that the equation (x+1)2+(x+2)2 +…..+ 

(x+2001)2 = y2 does not have a solution. 

Solution Let there be x=z-1001.  The equation becomes 

(z –1000 )2 +….+ (z –1 )2 +z2 + (z+ 1)2 + ….+ (z +1000 )2  

= y 2 or 2001 z2  +2( 12 +22 +…..1000 2 )=y 2. It follows 

2001z2 + 2·[(1000·1001·2001):6]=y2. Or the equivalent 

2001 z2 + 1000·1001·667 = y 2. The left side of the last 

relation is congruent with 2 (mod 3), which can not be a 

perfect square. 

Example 2 Determine all the pairs of primary numbers 

(p,q ) so that  p3 –q 5  =( p+q) 2 [2]. 

Solution The only solution is (7, 3). Presuming, for the 

beginning, that none of the primary numbers p and  q is 

equal to 3. Then p ≡  1 or 2 (mod 3) and q ≡  1 or 2 (mod 

3). If we have p ≡ q (mod 3 ), then the left side of the 

equation can be divided by 3, and the right side would not 

have this property. The same happens if p ≠ q (mod 3). 

If p = 3,then  4B $ 27, which is not possible.  

If q = 3, we get �� 6 243 � �� � 3
�, an equation with 

unique full solution p =7.  

3.6. Fermat's Method of Infinite Descent 

Fermat's method of infinite descent (FMID) can be 

formulated as follows: Let there be k a natural number. 

Presuming that:  If P(m) is true for a number m > k , then 

there is a smaller number j ,m > j > k  with the condition 

that the proposition P(j) is true. Then P(n) is false for any n > 

k. This happens when n > k for which the proposition P(n) 

is true, then we could form an infinite series of natural 

numbers n >n1 > n2 > …,  which is not possible.  Two 

particular cases of FMID are very useful in the study of 

Diophantine equations [9].   

FMID- Variant 1:  There is no strict decreasing series of 

natural numbers n1 > n2>…  In some situations, it is 

convenient to replace FMID- Variant 1 with the equivalents: 

If n0 is the smallest natural number n  for the proposition 

P(n) is true, then P(n) is false for any n < n0 . 

FMID - Variant 2: If the line of natural numbers (ni) 1≥i  

accomplishes the inequalities �� � �� � �,  then there is i0  

so that �V� � �V�(� � � 

Example 1 Solve in natural numbers the equation 

x3+2y3=4z3 [5]. 
Solution Observe that (0,0,0) is a solution. We will show 

that there are no other solutions. Presuming that the 
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equation has a nontrivial solution (x1,y1,z1). As both 

numbers √2� , √4�
 are irrational, it is not difficult to see that �� 8 1, �� 8 1, 5 8 1.. From the relation x�� � 2y�� � 4z�� it 

results 2|x1, so x1=2x2, �� � �(. Then 4��� � ��� � 25��, so 

y1=2y2, �� � �( . Analogically, we get z1=2z2, 5� � �( . 
Building a “new” solution (x2, y2, z2) with the property 

x1>x2, y1>y2, z1>z2. Continuing this procedure, we get a 

line of natural solutions ��	 , �	, 5	
	_�  with the property 

that x1>x2>x3>… which contradicts FMID – Variant 1. 
Example 2 Solve in natural numbers the equation  21 6 1 � �� [5]. 

Solution We remark that (0, k), 
+∈ Zk and (1, 1) are 

solutions to the equation. Applying FMID to the primary 

factors of x, we will show there are no natural solutions. 
Being p1 a divisor prim of x and q the smallest natural 

number with the property p1|2
q – 1. According to Fermat’s 

theory, there results p1|2
p

1
-1, and so 4 Q �� 6 1 $ ��. 

Let us show that q|x.  If not true, we get x= kq+r where 

0<r<q. So 2x – 1 = 2kq2r – 1= (2q)k·2r – 1 = (2q – 1+1)k·2r – 

1  ≡ 2r – 1 (mod p1). 

It results that p1/2
r-1, which contradicts the minimality  

of q. So q/x and 1<q<p1. Considering now p2   a primary 

divisor of q. Evidently p2 is a divisor of x and p2< p1. By 

continuing this procedure, we get an infinite descending 

series of the primary divisors of x. 

4. Illustrated Application 

1)   E: 12000, Determine x, y∈N so that x3-y3=5y2+58 

Vasile Solovăstru, Beclean, Bistriţa Năsăud G.M. nr.7-

8/2000.  

Solution: As 5y2+58>0, it results x3  >y3 and so x>y. 

Being n∈N∗, x=y+n. The equation becomes  

( ) 33
yny −+ =5y2+58 ⇔y2(3n-5)+3yn2+n3=58. 

For n=1, the equation becomes –2y2+3y-57=0, which has 

no real solutions.  For n=2, the equation y2+12y-50=0 has 

the solutions 66 " √86 � P. For n=3, the equation 4y
2

+27y-31=0 has the solutions y=1, and � � 6 ��@ � P. 

For n ≥ 4 , the equality is not satisfying, whichever is 

y∈N. 

In conclusion, y=1 and  x=4 is the only solution.  

2) Solve in natural numbers the equation : x+y+z=xyz+3 

Gh. Achim , Mizil, Prahova  G.M. nr 6/2006 

Solution: At least one of the natural numbers x, y or z 

which verifies the considered equation has to be 0. If x, y, 

z∈N∗ then (x-1)(y-1)≥0, meaning:  xy≥x+y-1 (1). 

Analogically, we get   xz≥ x+z-1 (2). And  yz ≥y+z-1 (3). 

By multiplying the relation (1) with z we get: 

xyz≥xz+yz-z, where, using (2) and (3), we deduce: 

xyz≥x+z-1+y+z-1-z, meaning:  xyz≥x+y+z-2, where: 

xyz+3≥x+y+z, which contradicts the equality   

xyz+3=x+y+z. 

So, at least one of the natural numbers x,y,z has to be 0. 

If x=0, we get y+z=3, where the solutions are: (0,0,3) (0,1,2) 

(0,2,1) and (0,3,0), analogically for y=0, respectively z=0, 

we get the solutions: (0,0,3), (0,1,2), (0,2,1), 

(0,3,0),(1,0,2) ,(2,0,1) ,(3,0,0) ,(1,2,0) and (2,1,0). 

3) Let us determine the multitude of the triplets (a,b,c) of 

natural zero numbers whose roots of equations ax2-bx+c=0 

and ax2-cx+b=0 are natural numbers.  

M. Chiriţă Mathematics Olympics, Local Stage, IXth 

grade, Bucharest, February, 2001. 

Solution: Being x1, x2∈N∗ the roots of the first equation 

and x3, x4 ∈N∗ the roots of the second equation. According 

to Viette relations, 
�� � �� � �� � P  and 

G� � �� · �� � P , 

meaning that a divides b and a divides c. Writing � � �� and  4 � G�, p, q ∈N∗, the equations become: x2-px+q=0 and  

x2-qx+p=0. 

As x1, x2 and x3, x4 ∈N∗, we have (x1-1)(x2-1) ≥ 0⇒ x1 

x2+1 ≥  x1+ x2⇒p+1 ≥ q and x3x4 +1 ≥  x3+ x4⇒q+1 ≥ p . 

So p+1 ≥ q ≥ p-1 or q∈{p+1, p, p-1}. We distinguish the 

cases:  

a) q=p. The given equations come back to x2-px+p=0.  

Then the discriminant ∆=p2-4p is a perfect square. Writing 

∆=k2 , k∈N, we have k2=p2-4p⇔ 4=(p-2)2-k2⇔ 4=(p-2-k) 

(p-2+k). As the numbers p-2-k∈Z and p-2+k∈Z have the 

same parity, it results that p-2-k= p-2+k, so p=4. We have 

the equation x2-4x+4=0 with natural solutions. In 

conclusion,  p=q=4. 

b) q=p+1. The equations become: x2-px+p+1=0 and x2-

(p+1)x+p=0. The second equation has natural solutions 1 

and p. For the first equation we have ∆= p2-4p-4=(p-2)2-8. 

Writing ∆=k2, k∈N, we get 8=(p-2-k) (p-2+k) and if p-2-k< 

p-2+k are natural numbers of the same parity, we have p-2-

k=2 and p-2+k=4 where p=5. The equation x2-5x+6=0 has 

natural solutions 2 and 3. In conclusion, p=5 and q=6. 

c) q=p-1⇒p=q+1 and like in b) we get q=5 ad p=6. The 

triplets (1, p,q) are: (1,4,4),(1,5,6) and (1,6,5), so the 

triplets (a,b,c) =(a,ap,aq) are: (a,4a,4a) ,(a,5a,6a) and 

(a,6a,5a), a∈N∗ Solve the equation in natural numbers: 

x+y+z=xyz+3. 

4) Solve in Z the equation: Z|� � 1| � 2Z � 4  

Mathematic Olympics, Local Stage, (VIIIth grade) 

Bucharest, the 17th of February 2001. 

Solution:From |�| � 
 �
 � 0
 9 � � "
 results    Z|3� � 1| � 2Z � 4 7 |3� � 1| � 2 � 4 or |3� � 1| � 2 � 64 7 |3� � 1| � or |3� � 1| � 66  

(impossible). |3� � 1| � 2  ⇔ 3x+1= ±  2   ⇔   3x+1= 2  

or  3x+1= -2 ⇔ 3x=1 or 3x=-3. As x∈Z, it results that  

x= -1 is the only solution of the equation.  

5) E: 12041. Determine a, b∈Z so that  
�� � �� 6 ��� � ��. 

Vasile Solovăstru, Beclean, Bistriţa Năsăud 

G.M.10/2000 

Solution: The equation is written like 2(b+a-1) =ab ⇔ -2 

= ab-2a-2b⇔2=ab-2a-2b+4 ⇔ 2 = (a-2)(b-2).We have the 

following cases :  



 �
 6 2 � 1� 6 2 � 2 � �
 � 4� � 3<< ; �
 �
 6 2 � 61� 6 2 � 62 � �
 � 1� � 0<<,  
it is not convenient and, 

�
 �
 6 2 � 2� 6 2 � 1 � �
 � 3� � 4<<; �
 �
 6 2 � 62� 6 2 � 61 � �
 � 0� � 4<< 
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 it is not convenient.  

6) E: 12022. Determine x, y∈Z with the property that 

x3+y3=x2+y2. 

Solution: Note that x2+y2≥0⇒x3+y3 ≥0, so it is not 

possible that x and y to be simultaneous negative. There are 

the following cases.  

a) x≥0, y≥0. Then x3≥ x2 (the equality being possible 

only for x=0 or x=1) and y3≥y2(the equality is for y=0 or 

y=1)⇒ x3+y3≥x2+y2, with equality only for �x, y
 ∈ ��0,0
; �0,1
;  �1,0
; �1,1
�. 

b) x≥0>y. We write z=-y so z >0. The equation becomes 

x3-z3= x2+z2, as x2+z2≥0, results x ≥ z. Being n∈N, n=x-z. 

Then, the equation is written n(x2+xz+z2)= x2+z2. If 

n=0,then  x2+z2=0⇒x=z=0, false, as   z >0 

If n≥1, then n(x2+xz+z2) ≥x2+xz+z2>x2+z2 (because xz>0 

from x-z=n≥1 and  z>0). In conclusion, there are no 

solutions in this case. Analogically, we study the case of 

y≥0>x. 

7) E:11594. Let us demonstrate that there is no x,y,z∈Z 

so that there is the equality: x4+y4+z4=x3+y3+z3+5. 

Cezar Ozunu, Daneţi, Dolj  G.M.7-8 /1998 (VIIth grade) 

Solution: The equation is written: (x4-x3)+(y4-y3)+(z4-

z3)=5 or (x-1)x x2+(y-1)yy2+(z-1)zz2=5. 

Because x-1 and x are full consecutive numbers, the 

result (x-1)x is an even number and so x4-x3 is even. 

Analogically y4-y3 and z4-z3 are even, so the left term is an 

even number. When 5 is uneven, the equation has no full 

solutions.  
8) Let there be p and q two primary numbers. Solve in 

natural numbers the equation    
�1 � �. � �2� . 

Solution : The equation is equivalent with the algebraic 

Diophantine equation (x-pq)(y-pq)=p2q2 . Considering all 

the positive divisors of the number p2q2 we get the 

following systems of equations:  

: x 6 pq �   1y 6 pq � p�q� < ;  : x 6 pq �   py 6 pq � pq� <; : x 6 pq �  qy 6 pq � p�q<; 
�x 6 pq �   pqy 6 pq � pq <; :x 6 pq �  p�y 6 pq � q� <; :x 6 pq �  p�q�y 6 pq � 1 <, 

which lead to the solutions: (1+pq,pq(1+pq)), 

(p(1+q),pq(1+q)), (q(1+p),pq(1+p)), (p(p+q),q(1+p)), 

(2pq,2pq), (pq(1+q),p(1+q)), (pq(1+p),q(1+p)),  

(q(p+q),p(p+q))  ,  (pq(1+pq),1+pq) . 

Observation The equation 
�1 � �. � �	, where  � � ���H���' … . . �I�� , has �1 � 2��
�1 � 2��
 … . �1 �2�I
 solutions in full positive numbers. The equation is 

equivalent with (x-n)(y-n)=n2 and �� � ����H����' … . . �I���, 

has  (1+2
1α ) ...(1+2

kα )  positive divisors. 

9) Find all the triplets (x, y, z) of natural numbers so that 

x3+y3+z3-3xyz=p, where p is a primary number bigger than 

3.  

Solution: The equation is equivalent with 

(x+y+z)·(x2+y2+z2-xy-yz-zx)=p.  Because  x+y+z>1,  

it results that x+y+z=p and x2+y2+z2-xy-yz-zx=1. The 

last equation is equivalent with (x-y)2+(y-z)2+(z-x)2=2 . 

Without restraining the generality we can presume that  x ≥  

y ≥  z , we have x-y ≥ 1 , y-z 1≥ and x-z ≥ 2 , which 

implies (x-y)2+(y-z)2+(z-x)2 ≥ 6>2. So x=y=z+1 or x-

1=y=z.  
The primary number p is 3k+1 or 3k+2, in the first case 

the solutions are (
2��� , 2��� , 2(�� 
  and the corresponding 

movements. In the second case, the solutions are 

(
2��� , 2(�� , 2(�� 
  and the corresponding movements.  

10) Show that the equation x5 –y 2  = 4  has no solutions 

in full numbers. 

Solutions Consider the equation (model 11). Because 

(x5)2= x10 ≡ 0 or 1 (model11) for any x5 ≡ -1, 0 or 1 (model 

11). So x5 –4 ≡ 6,7 or  8 (model 11). On the other hand, y2 

≡ 0,1,2,3,4 or 9 (model 11), so the equation as no full 

solutions.  

11) Demonstrate that n is a natural zero number with the 

property that the equation x3 –3xy2 +y3 = n has a solution 

 (x, y) in full numbers, then it has at least three solutions 

in full numbers. Show that the equation has no solutions if  

n = 2891. 

Solution: The left side of the equation looks like 

x3 – 3xy2 +y3 = 2x3 –3x2y –x3 +3x2y –3xy2 +y3= 

= 2x3-3x2y + (y –x )3= ( y –x )3 – 3 (y –z ) (- x)2 +( -x)3. 

This shows that if (x ,y) is a solution of the equation, 

then the same property applies to the pair (y-x,-x).  

Moreover, these two solutions are distinct because the 

relations y –x = x and  –x =y lead to x =y = 0. Analogically: 

x3 –3xy2 +y3 = x3 –3x2y +3xy2-y3 +2y3+3x2y –6xy2 = (x-

y )3 +3xy (x-y ) –3xy2 +2y3= (-y)3 –3 (-y)(x-y )2  + (x-y )3. 

So (-y , x-y ) is the third solution of the given equation.  

We use the transformations (x, y) →(y –x , - x), ( x, y )

→( -y , x-y) to solve the second part of the problem. 

Presuming that the equation has solutions and we consider 

(x ,y ) a solution of the equation. As 2891 is not divisible 

by 3 results x3 +y3 which is not divisible by 3. So, both 

numbers x, y give the same difference ≠ 0 in dividing by 

number 3, or one of them is divisible by 3 . Both situations 

imply that one of the numbers - x, y ,x –y is divisible by 3. 

So x3 ≡ 2981 (model 9 ), which is possible as any cube is 

congruent with 0 ,1 or 8 (model 9). 

12) Determine all the primary numbers p for which the 

system of equations p+1=2x2 , p2+1=2y2. Has solutions in 

full numbers x, y. 

Solution We will show that the only primary number 

with this property is p=7. Without restraining the generality 

we can presume that x, y0. From p2+1=2x2 it results p=2. 

Moreover, 2x2 ≡ 1 ≡ 2y2 (model p), implies x ≡ +y (model 

p), as p is uneven. As c<y<p, we have x+y=p and so P2 +1= 

2(p-x) =2p2 –4px+p+1.  Meaning that p=4x-1, 2x2=4x. It 

results x=0 or x=2, which leads to p= -1 or p=7. We get p=7 

and the solution of the system is  (x, y)=(2,5). 

5. Research Findings 

Therefore, the aim of our experiment was to investigate 
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the efficiency of the classes of Diophantine equations in 

solving these equations in classes of excellence in 

secondary schools. 

The obtained data proved that different situations created 

in the experiment represent valences specific to different 

categories of undergraduates (very good, good, mediocre).  

Confronting students with different situations and 

solving problems using the logical deduction is a means of 

discovery, which mobilizes the pupils even more.  

Thus, the hypothesis of my work was confirmed and I 

was able to reveal the existence of the possibility of 

creating characteristic situations specific to the teaching 

activities which take into consideration the amplification of 

inner reasons such as changing some extrinsically reasons 

into intrinsic reasons.  

At the same time, the results of investigation confirm the 

hypothesis that if we use and turn to good account the in all 

lesson stages while teaching mathematics in the secondary 

school then all the lessons will be efficient and the best 

results of the pupils. The results obtained through the use of 

the proofs led to the following findings: - the 

demonstrations and their use belong to the motivational 

situation being efficient because they mobilize the 

undergraduates and the students when they teach; - the 

obtained data demonstrated that the results are superior in 

all tests with the various methods of solving Diophantine in 

activity of solving mathematical problems; -  they activated 

the undergraduates with poor results too, eliminating their 

fear, shyness, discouragement; - any notion introduced or 

consolidated with their help is easier accessible 

contributing to the formation of abilities and skills for the 

demonstration of problems through the solving of 

Diophantine equations .  

Using the logical deduction as an active participating 

method in solving Diophantine equations offers the 

possibility to the future teachers to know pupils better, to 

know their individual particularities, their proper style, 

intelligence, will, temperament, behavior, briefly their 

personality.  

I consider that the proposed objective and the hypothesis 

of my research were confirmed and the importance of the 

teaching-learning elements solving of Diophantine 

equations through the deductive method is one of the most 

efficient methods of demonstrating and solving theoretical 

and practical problems. My strategy of presenting the way 

the undergraduates took part into solving the tasks is an 

attempt to use the theoretical and practical knowledge from 

reference works of combined with my experience. 

5.1. Participants 

The experiment took place during the second semester of 

the 2012-2013 school year, involving 52 students in the 

VIIth  grade middle school.  

The experimental group of 26 children (15 girls and 11 

boys) from the National Pedagogical College Bacau, 

believed to be a representative sample of realization our  

research objectives. 

The control group consisted of 20 students of the Faculty 

of Mathematics (10 girls and 10 boys) from the same 

college. In both classes, students are talkative, sociable, and 

their intellectual level is similar. 

5.2. Research Methods and Techniques 

The research was of an experimental type, using the test 

method. Other research methods and techniques used were: 

Pedagogical observation; The communication; Analysis of 

school documents and student work products; The 

interview; - Statistical techniques for data processing.  

5.3. The Hypothesis 

The research started from the following hypothesis: If we 

use the various methods of solving Diophantine  in the 

activity of solving mathematical problems and 

demonstration of active and participatory teaching methods, 

all lessons will be effective and student achievement will 

contribute more to improving learning performance, 

increased efficiency and creativity of students. 

5.4. Objectives of the Research 

Students practitioners have established the following 

objectives: To show that regardless of the field, solving 

Diophantine equations using various methods should 

characterize man, in many cases, school, family and society; 

- Performing an empirical research on the use of 

experimental improvement of methods for solving 

Diophantine equations and combining traditional methods 

of teaching and learning with active-participative methods; 

Promoting the idea that using the methods of solving 

Diophantine equations students can develop thinking, 

creativity, feelings and positive attitude, competitive spirit, 

intellectual skills. 

6. Presentation of the Final Test 

PART I. Write the letter of the correct answer (45 points). 

5p.1. Solve in integers the equation set   
��1 � ��. � �@ [6]. 

Equation solutions are?: 

A. (3,4); B. (3,2); C. (6,2); D. (-6,1).  

5p.2. The least common multiple of numbers 12, 18 and 

24 is:    A. 6;   B. 48;   C. 72; D. 108. 

5p.3. Natural solutions of the equation are xy-4x-

3y+11=0  is:    A. (2,3); B. (1,2); C.( 4,5); D. (0,3). 

5p. 4.  If a group of history students obtain the following 

marks: 8, 7, 9, 10, the average mark will be:  A.  7;   B.    8;   

C.    9;   D.   10. 

5p.5. A person who deposits the sum of 1200 USD in a 

bank account with 10% interest per annum will have, after 

a year: A. 1210 USD; B. 2400 USD; C. 1320 USD; D. 2400 

USD.  

5p.6. As the ratio of the acute angles of an isosceles 

triangle is equal to: A. 1; B. 0.5; C. 0; D. 0, (3). 

5p.7. The measured angles of a triangle are proportional 

to the numbers: 1, 2, 3. Triangle is: A. isosceles; B. 
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equilateral; C. angle greater than 900;  D. rectangular. 

 5p.8. An isosceles triangle has 5cm and 12cm sides 

respectively. The perimeter is equal to: A. 22cm; B. 17cm; 

C. 29cm; D. 24cm. 

5p.9. An isosceles triangle ABC is m (∡ ABC) = 1200 

BC and AD ⊥, B � (DC). AD = 6cm when AC is equal to: 

36cm; B. 12cm; C. 18cm; D. 6cm [6].  

PART II. The following problems require comprehensive 

solutions. (45 points)  

9p.10. Solve in integers the equation set: xy+3x+2y+5=0. 

9p.11. In the stadium there is a group of between 50 and 

100 athletes that can be grouped in columns of 12,18 or 24, 

but every time this is attempted, there are six athletes who 

cannot form a complete column. What is the minimum 

number of athletes? [7]. 

9p.12. Solve the equation in the set of integers: x2+y2 

+15=4(2x+3y) [6].  

9p.13. A right angled triangle ABC has a hypotenuse BC = 

12 cm and the side AC = 6cm. Let M be the midpoint of the 

hypotenuse and AD ⊥ BC, D � (BC). Calculate the length 

of the segment DM. 

9p.14. Let ABC be an isosceles triangle with base BC and 

M and N means that the sides AB, AC. Show that CM = 

BN [7]. 

The skills assessment test associated with the final 

assessment for Class VII a.  

C1. Operations with integers and whole 

C2. Equations Diophantine in the many N and Z.   

C3. Using properties, proportions, percentages, use of 

the arithmetic mean, solve percentage problems. 

C4. Sum of the angles of a triangle. Properties of 

isosceles triangle. Solve problems. 

C5. Theorem sharing the rest. divisor common, multiple. 

Table 1. Scale of assessment. 

Part I 

Item 

number  
I1 I2 I3 I4 I5 I6 I7 I8 I9 

Results  
A, 

C,D 
C 

A,

C 
B C A D C B 

Score  5p 5p 5p 5p 5p 5p 5p 5p 5p 

 

Part II 

10 (x+2)(y+3)=1 x=-1,y=2 or x=-3, y=-4 
5p 

4p 

11. n=12c1+6;n=18c2+6;n=24c3+6; n-6=72, n=78 
5p 

4p 

12. 

(x-4)2+(2y-3)2=10; (x,y) belongs to the 

crowd:{(5,3);(7,2);(3,3);(7,1);(5,0);(3,0); 

(1,2); (1,1)}  

5p 

4p 

13. AM=(BC/2)=6cm=AC=MC=BM, DM=3cm. 
5p 

4p 

14. 
Triangle ABC congruent to triangle BCD so BN 

congruent to CM 

5p 

4p 

Table 2. Matrix specifications - Test final assessment. 

CONTENTS/ 

SKILLS 
C1 C2 C3 C4 C5 

TOTA

L 

Operations with 

integers and 

whole 

- - 
I5 

(5p) 
- 

I4 

(5p) 
10p 

Equations 

Diophantine  in N 

and  Z 

I1 

(5p) 

I3 

(5p) 

I10 

(9p) 

I13 

(9p) 
- 28p 

Sets 
I2  

(5p) 
- 

I6 

(5p) 
- - 10p 

Reports and  

proportions 
- - - - 

I7 

(5p) 
5p 

Triangle 

properties 
- - - 

I14 

(9p) 

I11 

(9p) 
18p 

Congruence of  

triangles 
- 

I8 

(5p) 

I12 

(9p) 

I9 

(5p) 
- 19p 

TOTAL 10p 10p 28p 23p 19p 90p 

Table 3. Test results that reflect student performance on the final test 

determined the overall mean 7.50. 

Note Ratings Frequency  

9 - 10 very good 10 

7 - 8 good 9 

5 - 6 average 6 

1 - 4 insufficient 1 

The results obtained through the use of the proofs led to 

the following findings. 

 

Graphic 1. Histogram reflecting the final test results of students. 

 

Graphic 2. Frequency polygon reflecting the final test results of students. 
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Graphic 3. Graph comparing the initial and final test. 

7. The Results and their Interpretation 

Through the experiment carried out on an initial test with 

second year Math undergraduates of “Vasile Alecsandri” 

University of Bacau, it was proved that the teaching and the 

development of skills and abilities for assessment in high 

school are possible if we use various evaluation methods 

and procedures. This information was very useful in 

planning the following activities, taking into account the 

specificities of each student. Motivation for team learning 

consists (without the students being aware) of exciting 

activities, attractive, intuitive special materials, worksheets 

and modern teaching methods. 

In terms of the second year students of the Faculty of 

Mathematics, it was found that through impact assessment, 

observed learning and assessment records, there was active 

participation on the part of the students, increasing the 

degree of intellectual effort, interest and curiosity with 

regard to mathematics. 

This data was recorded in an observation grid. At the 

same time, the investigation results confirm the hypothesis 

that if we use various techniques for evaluation in all lesson 

stages, the teaching of mathematics in school  will be more 

efficient, and the results of the pupils will improve.  

This information was very useful in planning the 

following activities, taking into account the specificities of 

each student. Motivation for team learning consists 

(without the students being aware) of exciting activities, 

attractive, intuitive special materials, worksheets and 

modern teaching methods. 

In terms of the second year students of the Faculty of 

Mathematics, it was found that through impact assessment, 

observed learning and assessment records, there was active 

participation on the part of the students, increasing the 

degree of intellectual effort, interest and curiosity with 

regard to mathematics. 

This data was recorded in an observation grid. At the 

same time, the investigation results confirm the hypothesis 

that if we use various techniques for evaluation in all lesson 

stages, the teaching of mathematics in school  will be more 

efficient, and the results of the pupils will improve.  

8. Conclusion 

The article offers the conceptual frame and the necessary 

methodological references for the future secondary school 

and Maths teachers training through the initial formation. 

 The material is useful too, for those preparing   their 

Master Degree and for those who are at the beginning of 

their career or those preparing to become in-service 

teachers, or those preparing their second degree exam.  

The general problems of psycho pedagogy and the ones 

specific to the process of teaching, learning and assessment 

in Mathematics are coherently connected being based both 

on a vast documentation and on the author’s didactic 

experience.  

The utility of the article is increased by the great number 

of adequate examples from the method of solving 

Diophantine equations and from the educational practice, 

examples which offer to the undergraduates help for their 

formation.  

The article presents in a general way the deductive 

method of mathematical demonstration, after which some 

representative examples are offered. 
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