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Abstract: We present a conceptual proof of the Cauchy-Binet theorem about determinants to show how much one can gain 
by investing a bit more in conceptual development, comparing this treatment with the usual one in terms of laborious matrix 
calculations. The purpose is to stimulate a conceptual understanding and to overcome the usual empiricism, which is an 
obstacle to a real understanding of mathematical knowledge. The article also aims to show that mathematical terms could be 
understood as dynamic processes, based on the interaction between intensional and extensional aspects. As it is not really 
possible to answer any question about the nature of mathematical objects definitively, much less to limit the possible 
interpretations of mathematical concepts, processes of concept evolution are of great importance to mathematics as a human 
activity.  
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1. Complementarity 

Let us go to the notion of complementarity, by 
pointing out once more that we use our symbols and 
concepts in a twofold sense, both attributively and 
referentially. Bertrand Russell illustrates the point by 
means of the distinction he draws between names and 
descriptions. We have, he writes: 

. . . "two things to compare: a name, which is a simple 
symbol, directly designating an individual which is its 
meaning (or referent), and having this meaning in its own 
right independently of the meanings of all other words; a 
description, which consists of several words, whose 
meanings are already fixed, and from which results 
whatever is to be taken as the ‘meaning’ of the description. 
(Russell (1998), p. 174) 

On account of this distinction between naming and 
describing Russell is led to criticize and refine Frege’s 
interpretation of A = B or of A = A. Frege treated the 
difference between these two forms of an equation by 
his own distinction between sense and meaning, concluding 
that singular descriptions function like designations, as one 
usually understands them referentially. Russell considers 

this an error, for we cannot gain knowledge by just 
giving things new names. 

Thus so long as names are used as names, ‘Scott is Sir 
Walter” is the same trivial proposition as “Scott is Scott”. 
(Russell (1998), p. 175) 

And, ". . . a proposition containing a description is not 
identical with what that proposition becomes when a name 
is substituted, even if the name names the same object as 
the description describes. “Scott is the author of Waverley” 
is obviously a different proposition from “Scott is 
Scott”. (Russell (1998), p. 174) 

And by the very same token: "If ‘x’ is a name, x = x is 
not the same proposition as “the author of Waverley is the 
author of Waverley.” . . . In fact, propositions of the form 
“the so-and-so is the so-and-so” are not always true: it is 
necessary that the so-and-so should exist. It is false that the 
present king of France is the present king of France, or that a 
round square is a round square"  (Russell (1998), p. 176). 

‘Unicorn’ would then be an abbreviated description and 
‘square root of -1’ as well. For these descriptions the 
affirmation ‘x exists’ makes sense, although it may be 
false, whereas, according to Russell or Frege, ‘y exists’ 
is meaningless if ‘y’ is a name, because ‘exists’ is not a 
predicate. 
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But the essential point is that both, indices (names) as 
well as icons (predicates or descriptions) are essential 
although we may never be able to separate them 
completely, as we always use our linguistic terms both 
referentially and attributively.  

To illustrate the latter point let us discuss the 
following example. Suppose an English tourist visiting 
Amazonia sees a biggish animal near the shore of a lake 
and asks what kind of animal this is. He is told that what 
is seen is a Capivara. As the tourist cannot speak 
Brazilian Portuguese this is only an indexical or 
referential designation, which leaves him without any 
representation for the moment. If he is offered, to relieve 
his frown, an Anglicization in the form of ‘water hog’, his 
face lights up and he says ‘aha’, actually believing to have 
understood what it is, the fact being that he is able to link 
something meaningful with the words of ‘water’ and ‘hog’. 
This is thus a case of some kind of descriptive designation, 
which has the disadvantage, however, of creating 
completely false notions. For the Capivara is no swine at 
all, but a grass-eating rodent. The Amazonian is in the 
opposite situation, as for him the Indian name of Capivara 

has the meaning of ‘grass-eater’, while the designation 
‘water hog’ tells him absolutely nothing. 

Now such a referential use sometimes serves as the 
starting point of further observations if a motive or 
curiosity results. After some time, the tourist may observe 
some characteristics and habits of the Capivara, and then 
will be able to say, “Capivaras are good swimmers and 
divers”, or “the Capivara lives in family groups”, etc. 
Gradually, the use of the term changes and it is 
transformed into a description. 

The key thing about a name or an index is that it has a 
direct connection with its object. In the case of the present 
example, this connection is established by concrete 
ostentation. It indicates its objects without giving any 
information about them. Therefore, we are able to 
understand an index as a sign only by means of some 
‘collateral experience’, or contextual acquaintance with 
what the sign denotes to make the interpretation work. For 
instance, I point my finger to what I mean, but I cannot 
make my companion know what object I mean, if he cannot 
see it, or if seeing it, it does not, to his mind, separate itself 
from the surrounding objects in the field of vision.  

The interdependence of attributive vs. referential uses 
of terms is much more prominent with respect to 
mathematical concepts than in empirical ones, because 
mathematical objects firstly do not exist independently 
of any representation and secondly because their 
instrumental character is much more pronounced. 

If one for instance wants to know what "uneven 
number means the best thing is to answer by saying “x is 
an odd natural number if there exists some natural 
number n such that x = 2n+1”. 

Such an explanation serves well if for instance on 
tries to prove that the product of two uneven numbers is 
uneven again, because the proof becomes a 

straightforward calculation. On such grounds, Kant had 
called mathematics synthetic a priori. The proof does 
not come about by trying to interpret what the terms 
really mean.  

Kant uses a different example from geometry. How do 
we prove that the angle sum in a triangle amounts to two 
right angles? The philosopher would try, Kant writes, to 
analyze the concept of triangle, but: 

“(…) he may analyze the conception of a straight line, of 
an angle, or of the number three as long as he pleases, but 
he will not discover any properties not contained in these 
conceptions. However, if this question is proposed to a 
geometrician, he at once begins by constructing a triangle. 
He knows that two right angles are equal to the sum of all 
the contiguous angles, which proceed from one point in a 
straight line; and he goes on to produce one side of his 
triangle, thus forming two adjacent angles which are 
together equal to two right angles ... “. (Kant, B 744).  

But sometimes in mathematics like in philosophy we 
employ real conceptual thinking particularly so because 
calculations or constructions become too intricate end 
complex.  

Again we shall give some examples. 
In Otte (2006) we have extensively discussed the 

following: 
Theorem: The orthocenter O, centroid CG and 

circumcenter M of any triangle are collinear. The line 

passing through these points is called the Euler line of the 

triangle. The centroid divides the distance from the 

orthocenter to the circumcenter in the ratio 2:1.  

By analyzing the proofs of this theorem as presented by 
textbooks of elementary geometry, one might hit upon the 
idea that the theorem is not at all about the relations 
between different properties of a single triangle. But rather 
is an affirmation about the relation between on and the 
same property (namely the location of the orthocenter) of 
two different triangles (the original one and its medial 
triangle, the triangle formed by joining the midpoints of the 
sides of the given triangle). (Fig.7, p. 148). 

Now these two triangles are related to one another by 
means of a rotation of 180 degrees about the centroid of the 
given triangle and an additional shrinking of the rotated 
triangle towards the centroid to half its size. Thus the image 
point X’ of any point X of the plane under this 
transformation lies on the line that contains X and the 
centroid, the center of the transformation, to the other side 
of the centroid and half the distance from it. This completes 
the proof. 

Look however on an Euclidean proof (the same type 
Kant had in mind) in Otte (2006), Fig 8, p. 149. 

Now to give an example from algebra to see how 
complicated and involved calculations may become take 
the theorem about the determinant of the product of two 
real n x n matrices A and B, which stablishes  

det(A.B) = det(A) . det(B) 

The proof in the general case becomes so complicated as 
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to contain n-times summations in the most intricate way (see 
appendix). 

However, before we come to this theorem we should like 
to see how the fact that mathematical concepts either may 
serve as nouns or as rules of inferences, like in the case of 
the odd number or in Kant's example is treated by 
linguistics. 

2. Semiotics and Complementarity 

We do encounter the same type of complementarity 
with respect to linguistic behavior.  

Jakobson, for example, classified linguistic behavior as 
referring to either code or context, and has accordingly 
described the diverse forms of aphasia in relation to 
disturbances of either of these references. For aphasics 
of the first type context is the indispensable and decisive 
factor. Their behavior is characterized by Jakobson as “a 
loss of meta-language” rendering them incapable of 
uttering a predication that has not been stimulated by the 
context at hand. 

In the pathological cases under discussion, an isolated 
word means actually nothing but blab. As numerous tests 
have disclosed, for such patients two occurrences of the 
same word in two different contexts are mere homonyms. 
Such a person may never utter the word knife alone, but, 
according to its use and surroundings. 

“alternately call the knife pencil-sharpener, 

apple-parer, bread-knife, ... so that the word knife was 
changed from a free form, capable of occurring alone, into a 
bound form... . The patient was able to select the 
appropriate term bachelor when it was supported by the 
context ... but was incapable of utilizing the substitution 
set bachelor = unmarried man as the topic of a sentence, 
because the ability for autonomous selection and 
substitution had been affected. [These patients cannot] be 
brought to understand the metaphoric use of words” 
(Jakobson, 1956, p. 79–80). 

In the second type of aphasia, described by Jakobson as 
contiguity disorder, that is, the ability to construct 
contexts is impaired. The syntactical rules of organizing 
words into higher units are lost....  

“This type of aphasia tends to give rise to infantile 
one-sentence utterances and one-word sentences. The 
patient confined to the substitution set deals with 
similarities, and his approximate identifications are of a 
metaphoric nature, contrary to the metonymic ones 
familiar to the opposite type of aphasics". (ibid., p. 
85–86) 

One could call one type of aphasia a loss of predication, or, 
using semiotic terminology, a lack of iconicity and the 
other a loss of instrumental or functional orientation. The 
less a word depends grammatically on the context, the 
stronger is its tenacity in the speech of aphasics with a 
contiguity disorder and the earlier it is dropped by patients 
with a similarity disorder. (ibid., p. 86) 

Mathematics, considered as semiotic activity, is to be 

characterized by the related complementarity, or saying it 
differently, by the necessity of establishing such a 
complementarity within the process and evolution of 
cognitive activity. 

3. A Theorem about Determinants 

Theorem: Let A and B be n x n matrices with real 
coefficients. Then det(A.B) = det(A) . det(B) . 

Now, first, what kind of object is a matrix? A matrix is 
nothing but a scheme of numbers and it can mean many 
things: linear transformations, tensors, production-schemes 
or whatever. 

As we have said, we would like to avoid that frightening 
calculations in the general case. Our strategy will be the 
following: 

1. We treat the simple case of the determinant of 2x2 
matrices. In this case, the theorem is verified easily 
by calculation. 

2. We interpret the modulus of a determinant in terms of 
plane geometry as the area of a parallelogram, where 
the rows of the matrix are occupied by the 
coordinates of the sides of the parallelogram. 

3. To do that we begin with the simplest case of a 
rectangle, whose sides are on the coordinate axes and 
then we show how the area remains invariant under 
certain transformations. For example if we add a 
multiple of one side of the parallelogram to the other 
side (in terms of vector addition) the area does not 
change. 

4. We verify that the corresponding algebraic 
transformations of the matrix - that is adding a 
multiple of one row to the other row does not change 
the determinant. This concludes the proof that the 
area of the parallelogram can be seen as the modulus 
of the vector product of its sides generalizing the 
familiar case of the rectangle area. 

5. The theorem det(A.B) = det(A) . det(B) can be 
interpreted geometrically as follows. We consider C 

= A.B as a parallelogram, which is an image of the 
parallelogram B after a linear transformation 
represented by the matrix A is applied to it. If | det(A) 

|= 1 than the area remains invariant. This means that 
the set of areas or the moduli of vector products 
forms a set which is isomorphic to the quotient group 
Gl(2)/Sl(2), where Gl(2) is the group of invertible 
linear transformations and Sl(2) is the subgroup of 
transformations or matrixes with determinant equal 
to +1 or -1. Now Gl(2)/Sl(2) is a one-dimensional 
vector-space. In fact, it is nothing but the set of 
multiples of the unit matrix. 

We can reformulate our result in the following way: The 
set of area functions, that is, the set of bilinear an 
anti-symmetric functions f(x,y), where x and y are 
two-dimensional vectors, is itself a one-dimensional 
vector-space. 

Now we generalize this last result to the n-dimensional 
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case. So let Φ (x1, ... xn) be a determinant function, that is, 
it is a multi-linear and anti-symmetric function on the 
vector-space V and let (a1, ....an) be a basis of this vector 
space such that Φ (a1, ....an) = 1.  

Finally let Ψ (x1, ... xn) be a second determinant function, 
then we have 

Ψ (x1, ... xn) = r. Φ (x1, ... xn)  (**), 

where r is a real number. 
To prove (**) we need only define r as equal to         

Ψ (a1, ....an). Then Ψ (x1, ... xn) and Φ (x1, ... xn) being 
identical on a basis (a1, ....an) are also identical on the whole 
vector-space V. 

Appendix 

Theorem. Let A and B be matrices of order n over the real 
field.  

Then det (AB) = det (A) . det (B). 
Proof: Let A = (ajj), B = (bij) and C =AB = (cij). Then 

Cij = �a��	
�
� b�
			(i, j	 = 	1, . . , n). 

So det (C) = ��� �∑��������⋯ ∑������� ⋯ ∑���!��!"⋯∑�"������ ∑�"����� ∑�"�!��!"# 

(1)= ��⋯��
���� ���������⋯ ������� ⋯⋯ ���!��!"⋯�"������ �"����� ⋯ �"�!��!"#�!

	��
 

(2)= � ������� …��!"	��� &����⋯ ���� ⋯⋯ ���!⋯�"�� �"�� ⋯ �"�!'(��,…,�!)
 

(3)= � ������� …��!"	��� &����⋯ ⋯⋯ ���!⋯�"�� ⋯ �"�!'(��,…,�!)�)*�+
 

(4)= �������� …��!"	-./(0) det(4)5  

(5)= det(4)�-./(0)������� …��!"	5  

(6)= det(4)�-./(0)����� �� …�"�! 	5
(7)= det(4) . det	(9) 

Explanations: 

1. The determinant is a linear function in each column.  
2. Linearity of the determinant again 
3. Elimination of the parcels in which ki = kj com i ≠ j 

since, in this case  

��� &����⋯ ⋯⋯ ���!⋯�"�� ⋯ �"�!' = 0 

4. With the hypothesis that ki ≠ kj for i ≠ j, the matrices  

&����⋯ ⋯⋯ ���!⋯�"�� ⋯ �"�!' 

have the same columns as the matrix A with a permutation 0.   
If 

0 = ; 1	 2	 ⋯ /	<� < ⋯ <"= 

then the determinant of that matrix is equal to the 
determinant of A multiplied by sgn(0), the signal of 0 . 
5. Obvious 
6. A permutation and its inverse have the same signal.  
7. Definition of determinant of a matrix.  
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